
New Defenses and Attacks for
Smartphones & Implications for DFS

Kevin Butler, Univeristy of Florida

Android Operating System

• Android is the world’s most popular operating system with billions of
users throughout the world

• Both the operating system and the devices that run it are increasing
in security with every subsequent release

• Attacks and attacker capabilities are also increasing

• In this talk:
• Discussion of new changes in Android 12 and potential implications for DFS

• Discussion of access control mechanisms in Android

• Platform-level attacks against Android devices

Android 12 Changes and DFS

• Biggest new changes in Android 12 that could affect DFS are power
management restrictions and changes to location privacy

• Android 12 has new power management restrictions in apps
• If an app is not being regularly used, its schedule for running will be reduced

• What are the implications on notifications of transactions?

Message Changes in Android 12

• If power management restrictions are active, applications will
receive five "high-priority" Firebase Cloud Messaging (FCM)
messages

• However, further messages may be delayed if the app is in power
saving mode

• Developers: Need to consider what this means for users who
might not often open their apps
• Will they notice if transactions affecting their account are occurring?

• Research and user testing should be done in advance of these changes

Location Privacy in Android 12

• Android 12 has a much greater focus on user
privacy than any previous version of the OS

• As part of this, users have a choice of the
granularity of location reported to apps
regardless of what particular permissions might
be set

• If your DFS app relies on locating transactions
with ACCESS_FINE_LOCATION permission set,
users will still be able to restrict the app to
coarse location, even if this is set

Figure from Android 12 Developer documentation:
https://developer.android.com/about/versions/12/approximate-
location

https://developer.android.com/about/versions/12/approximate-location

Implication of Coarse Location

• From a user privacy perspective, this has great value - deters
surveillance activities and fine-grained location tracking (and
hence profiling)

• From a DFS perspective, less clear what the drawback might be
• e.g., if app relies on fine-grained location for determining that a

transaction is happening between two registered users in the same
location as a fraud-prevention mechanism

• Developers: need to think closely about this setting if apps are
relying on validating fine-grained location between parties

Android Access Control

• Android has a wide variety of ways to protect access to information

• At the app level: Android permissions set within the Android
middleware

• At the platform level: discretionary access control (Unix-style
permissions) and mandatory access control (SELinux mechanisms)
within user and kernel space for the underlying Linux kernel
• Linux capabilities are also supported

Reasoning About Access Control

• Reasoning about how these various access control mechanisms work
together and their implications on programs can be challenging

• There are potential vendor issues with SELinux configuration that can
lead to vulnerabilities
• negation overuse that can allow policy circumvention

• large policies that are inefficient and difficult to reason about

• allowing of debugging features in production

DFS Developer Perspective

• Developers should be aware of the underlying platforms that they are
developing for and to be aware of any vulnerabilities raised due to
access control issues

• Currently an area of research in the academic community
• e.g., our research on BigMAC, a system that allows querying of policies based

on the actual firmware of deployed devices that incorporates mandatory and
discretionary access controls and Linux capabilities

• findings; some weaknesses in vendor SELinux
policies (disclosed to vendors)

• more information: https://www.usenix.org/conference/
usenixsecurity20/presentation/hernandez

0 1 0 0 0 0 1 1 0 1 1 1 0 0 0 0 1 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 0

1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 1

BigMAC

Instantiated Policy Graph

Query
Input

SEPolicy Parsing

Policy Instantiation

Filesystem Extraction

DAC/CAP/Labels

Type Relations

Processes/Objects

File / Object IPC ObjectSubject / Process

Firmware

Filesystems

Real-System (Ideal)

Processes/Files

Attack Graph Ground Truth Comparison

Runtime

Extraction

Ctx.Ctx.

1 1

Process Tree
Credentials

File DAC/MAC

https://www.usenix.org/conference/usenixsecurity20/presentation/hernandez

Trusted Execution Environments

• Trusted execution environments (TEEs) can be very beneficial for
developers to use, and are recommended as best practice for storing
sensitives information in the Digital Financial Services security
assurance framework
• Best practices involves using services such as the Android Keystore for

cryptographic keys and the keychain API

• TEEs run in their own enviornment isolated from other activities on
the mobile device
• e.g., on ARM processors, the Android OS runs in the "normal world" and the

TEE runs in the "secure world" configured by hardware through TrustZone

• separate OS used for TEEs (e.g., Trusty TEE for AOSP, Qualcomm QSEE,
Trustonic Kinibi)

https://www.itu.int/en/ITU-T/extcoop/figisymposium/Documents/ITU_SIT_WG_Technical%20report%20on%20Digital%20Financial%20Services%20Security%20Assurance%20Framework_f.pdf
https://developer.android.com/training/articles/keystore

Threats Against Trustlets

• Implementation of secure world code has to
be done very carefully

• The limited operating environment of trusted
OSes means less support for software
security mechanisms (e.g., no ASLR)

• Trusted applications (TAs, or Trustlets) are
designed to run in the TEE, but flaws in any
of them can put the entire TEE at risk

Figure from ARM Developer
documentation:
https://developer.arm.com/docu
mentation/100935/0100/Interacti
on-of-Normal-and-Secure-worlds-
?lang=en

https://developer.arm.com/documentation/100935/0100/Interaction-of-Normal-and-Secure-worlds-?lang=en

Testing Trustlet Security

• PARTEMU work from Samsung Research
(https://www.usenix.org/conference/usenixsecurity20/presentation/h
arrison) focused on fuzz testing TAs on emulated firmware platforms
from 12 different smartphone vendors

• discovered 48 previously-unknown vulnerabilities, some of which were
exploitable (e.g., privilege escalation, arbitrary code execution)

• Often caused by developer mistakes
• assumptions about coding practices that differ in the secure world

• not validating information received from the normal world)

https://www.usenix.org/conference/usenixsecurity20/presentation/harrison

Speculative Execution

• Meltdown and Spectre attacks are possible against mobile processors

• Branch prediction pre-computation can be a source for creating "side
channels" that lead to understanding of program state and stealing
data

• Mitigations exist in Android but a particular vulnerability (Straight-Line
Speculation) exists for ARM processors
• Challenging to mount but dangerous if they are successful

• Mitigations have been added to compilers by ARM

• Speculative execution attacks are an area of great current academic
interest

Advice to DFS Developers

• Many of these new attack vectors are experimental and have not been
widely deployed, but concerns are being addressed by industry and
academic

• Importantly: keep adhering to best practices!
• Use Keystore and trusted hardware environments when they exist on

platforms

• Exercise least privilege and make use of access control mechanisms

• But: security is a moving target

• Keep aware of what is happening in the community and ensure that
your applications are responsive to changes

• Always be proactive!

Thank You

• Questions?
• Email: butler@ufl.edu

• Twitter: @kevinrbbutler

mailto:butler@ufl.edu

